An Overview of Microarray Data Analysis at NIEHS

Microarray Users' Group April 21, 2000

Components of Analysis

Data acquisition and image analysis

 Statistical analysis of ratio data to identify "outlier" genes

• Follow-up analysis (clustering, etc.) on the set of differentially expressed genes

Analysis Software

IPLabs (Scanalytics, Inc.)
Image processing

ArraySuite (Yidong Chen/Scanalytics)
Array alignment, target location, & ratio analysis

Cluster (Stanford University)
Spotfire (Spotfire AB)
GeneSpring (Silicon Genetics)

NMC Data Management

Simplified Overview of Gene Expression Analysis Using cDNA Microarrays

Sources of Variability

- Within-array variation
 - Labeling and hybridization differences
- Between-array variation
 - Print to print differences
- Biological variability
 - RNA quality
 - Expression differences between animals
- Measurement error (scanning)

Image Analysis

1. Target Segmentation

2. Background Subtraction

3. Target Detection

4. Target Intensity Determination

5. Ratio Analysis

Background Variation

Background Mean: 345

Std. Dev.: 158

Background Mean: 187 Std. Dev.: 250

Locating Array Targets

Pixels significantly more intense than the background are selected to define the target area

Pseudo-color image is generated according to intensity ratio

Statistical Analysis

- Intensity ratios have a constant *coefficient* of variation¹.
 - Variability in a response increases as the response itself increases
- Analyze the *logarithm* of the ratios.
 - Evens out skew distributions
 - Gives values that are more independent of the absolute magnitude of the response

Analysis - Ratio Distribution

Analysis - Lognormal Distribution

Scatterplot of ratio data

Another example

Green channel

Red channel

Identifying Outlier Genes

For a specified *confidence level* (95%, 99%, etc.) a list of "outlier" genes is produced.

Replication

- Why replicate?
 - Genes may be identified as differentially expressed in an experiment completely at random.
 - The chances of this depend on the confidence level used in the analysis.
- How many times?
 - Depends primarily on the availability of resources
 - Also depends on what level of uncertainty in your results you can tolerate

Replication

Three replicates at 95% confidence, 2000 gene array

Times flagged by chance	Probability (p)	Frequency (Np)
0	0.8574	1715
1	0.1354	271
2	0.007125	14
3	0.000125	<1

Three replicates at 95% confidence, 12000 gene array

Times flagged by chance	Probability (p)	Frequency (Np)
0	0.8574	10289
1	0.1354	1625
2	0.007125	85
3	0.000125	1

Correlations between animals

Cluster Analysis

- Allows identification of groups of genes that are similarly expressed
- Several methods:
 - Hierarchical (trees)
 - Self-organizing maps
 - Gene shaving
 - Support vector machines

Post-Analysis

- Images are stored
 - ArrayDB (under development)
 - Archived to CD
- All processed data will be stored in the ArrayDB database (when the system is fully implemented) for subsequent analysis.